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Abstract

We define and compare a selection of congruence properties of quasivarieties, including
the relative congruence meet semi-distributivity, RSD(∧), and the weak extension prop-
erty, WEP. We prove that if K ⊆ L ⊆ L′ are quasivarieties of finite signature, and L′
is finitely generated while K |= WEP, then K is finitely axiomatizable relative to L. We
prove for any quasivariety K that K |= RSD(∧) iff K has pseudo-complemented congruence
lattices and K |= WEP. Applying these results and other results proved in M. Maróti,
R. McKenzie [14] we prove that a finitely generated quasivariety of finite signature L is
finitely axiomatizable provided that L satisfies RSD(∧), or that L is relatively congruence
modular and is included in a residually small congruence modular variety. This yields as
a corollary the full version of R. Willard’s theorem for quasivarieties and partially proves
a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type characterization
for RSD(∧) quasivarieties and supply an algorithm for recognizing when the quasivariety
generated by a finite set of finite algebras satisfies RSD(∧).

1. Introduction

We interpret the class-operators H,S,P in the inclusive sense, so that for
example, S(K) denotes the class of all algebras isomorphic to a subalgebra
of some algebra in K. A quasivariety is a class K of algebras of the same
signature and such that S(K) = P(K) = Pu(K) = K where Pu(K) denotes
the class of all algebras isomorphic to an ultraproduct of a system of algebras
from K. Since P(K) contains a product of an empty system of algebras, a
quasivariety contains the one-element algebras of its signature. A variety is
a quasivariety which, in addition, satisfies H(K) = K. A quasivariety K is
said to be finitely generated if K = SP(M) for some finite set M of finite
algebras. Likewise, a variety K is said to be finitely generated (i.e., as a
variety) if K = HSP(M) for some finite set M of finite algebras.

For a quasivariety K and A ∈ K we write ConA for the lattice of con-
gruences of A and ConKA for the lattice of K-congruences of A, where a
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ian National Foundation for Scientific Research (OTKA), grant nos. T48809 and T60148,
the third author (McKenzie) was supported by US NSF grant DMS-0245622, and the
fourth author (Nurakunov) was supported by a COBASE grant awarded by the National
Academies of the US.

1
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K-congruence is any congruence θ such that A/θ ∈ K. Recall that the join
∨ in ConA and the join, ∨K, in ConKA are related by the equation

α ∨K β = α ∨ βK, for {α, β} ⊆ ConKA

where for any θ ∈ ConA, θK is the smallest member of ConKA containing
θ.

This paper is devoted to the study of a collection of sufficient conditions
for finite axiomatizability of a finitely generated quasivariety. All such con-
ditions we encounter will be expressed as combinations of properties of the
lattice of congruences, or the lattice of relative congruences (or a combina-
tion of the two) holding for all algebras in a quasivariety. We now define
the congruence properties we shall use. Recall that a lattice L is said to be
distributive (respectively modular, or meet semi-distributive) if x∧ (y ∨ z) =
(x∧ y)∨ (x∧ z) (respectively {x ≥ y} → {x∧ (y ∨ z) = (x∧ y)∨ (x∧ z)}, or
{x ∧ y = x ∧ z} → {x ∧ (y ∨ z) = x ∧ y}) holds for all elements x, y, z in L.

A quasivariety is said to satisfy CM (respectively, CD or SD(∧)) if and
only if all the lattices ConA with A ∈ K are modular lattices (respectively,
distributive lattices, or meet semi-distributive lattices). A quasivariety is
said to satisfy RCM (respectively, RCD or RSD(∧)) if and only if all the
lattices ConKA with A ∈ K are modular lattices (respectively, distributive
lattices, or meet semi-distributive lattices).

Let K be any quasivariety. We say that K satisfies the extension property,
EP, if and only if for all A ∈ K the map θ 7→ θ

K is a lattice homomorphism
of ConA onto ConKA. We say that K satisfies the weak extension property,
WEP, if and only if for all A ∈ K and α, β ∈ ConA, if α ∧ β = 0A then
αK∧βK = 0A. We say that K satisfies the PCC, or has pseudo-complemented
congruences, if for all A ∈ K and α ∈ ConA, there is a largest congruence
β ∈ ConA satisfying α ∧ β = 0A (i.e., β is the pseudo-complement of α in
ConA). We also write K |= P to denote that K satisfies P. For example,
K |= RSD(∧) means that K satisfies RSD(∧).

The serious study of the finite axiomatizability property in finitely gener-
ated varieties originated with Roger Lyndon in the 1950’s. A decade earlier,
Garrett Birkhoff had asked whether the equational theory of a finite alge-
bra of finite signature must be finitely axiomatizable. Lyndon proved in
[12] that the equational theory of every two-element algebra of finite sig-
nature is finitely axiomatizable and also provided in [13] the first example
of a finite algebra (a 7-element groupoid) the equational theory of which is
not finitely axiomatizable. In the half-century since these papers appeared,
many interesting and important results concerning the finite or non-finite
axiomatizability of finitely generated varieties have been established. (See
[14] for a brief account of the results obtained). The following three results
have been regarded with respect to the range of their applicability as the
most distinguished positive results in this literature.
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Baker’s theorem (K. Baker [2]). Let K be a variety of finite signature. If
K is congruence distributive and finitely generated, then K is finitely axiom-
atizable.

McKenzie’s theorem (R. McKenzie [16]). Let K be a variety of finite sig-
nature. If K is congruence modular, residually small, and finitely generated,
then K is finitely axiomatizable.

Willard’s theorem (R. Willard [23]). Let K be a variety of finite signature.
If K is congruence meet semi-distributive and has a finite residual bound,
then K is finitely axiomatizable.

Once each of the above theorems had been proved, it prompted attempts
to find its valid extensions within finitely generated quasivarieties, or equiv-
alently speaking, within quasi-equational classes generated by finite sets of
finite algebras (see for example W.J. Blok and D. Pigozzi [4], J. Czelakowski,
W. Dziobiak [5], W. Dziobiak [6], K. Kearnes, R. McKenzie [11], M. Maróti
and R. McKenzie [14], A. Nurakunov [20], and D. Pigozzi [21]). A quasi-
equational class is a universal Horn class which contains a one-element al-
gebra.

Extending Willard’s theorem into quasivarieties M. Maróti, R. McKenzie
[14] proved that if K is a finitely generated quasivariety of finite signature
which has both PCC and WEP, then K is finitely axiomatizable.

We prove that RSD(∧) ⇔ PCC + WEP. Thus we obtain the full version
of Willard’s theorem for quasivarieties.

In [21], D. Pigozzi proved the following theorem: If K is a finitely gener-
ated and relatively congruence distributive quasivariety of finite signature,
then K is finitely axiomatizable. D. Pigozzi’s theorem fully extended K.
Baker’s theorem into quasivarieties, and is itself extended by the new re-
sults mentioned above. Having proved his theorem and looked for a com-
mon extension into quasivarieties of both his and R. McKenzie’s theorem,
D. Pigozzi conjectured in the late 1980’s the following: If K is a finitely gen-
erated and relatively congruence modular quasivariety of finite signature,
then K is finitely axiomatizable.

K. Kearnes, R. McKenzie [11] developed a commutator theory for rela-
tive congruences in relatively congruence modular quasivarieties, with the
expectation that it can be used to prove D. Pigozzi’s conjecture; but the
truth of this conjecture remains an open question.

We prove that D. Pigozzi’s conjecture is true provided that K is addi-
tionally assumed to be included in a residually small congruence modular
variety.

In view of R. Mckenzie’s negative solution to A. Tarski’s problem (see R.
McKenzie [17]) which asked if there is an algorithm to determine whether
the variety generated by a finite set of finite algebras of finite signature is
finitely axiomatizable, and the fact that the analogue of A. Tarski’s prob-
lem for quasivarieties has not been solved yet, theorems like those of K.
Baker, R. McKenzie, D. Pigozzi, and R. Willard have been gaining an extra
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meaning. All known theorems of this type provide sufficient conditions for
a finitely generated variety or quasivariety of finite signature to be finitely
axiomatizable. All the known sufficient conditions have been shown to be
algorithmically verifiable. Continuing this tradition, we offer here, in Sec-
tion 6 an algorihm for determining if a finite set of finite algebras generates
a quasivariety satisfying RSD(∧).

2. Implications between congruence properties

The congruence properties CM, CD, SD(∧), RCM, RCD, RSD(∧), EP,
WEP and PCC were defined in the introduction. We require also two prop-
erties of a different character.

Let K be any quasivariety. A finite set of pairs of terms,

W = {(si(x, y, z), ti(x, y, z)) : 0 ≤ i < n} ,
is said to be a set of Willard terms for K if and only if the equations
si(x, y, x) ≈ ti(x, y, x) (0 ≤ i < n) are valid in K and

K |= (∀x, y) [x 6= y →
∨
i<n

(si(x, x, y) = ti(x, x, y) ↔ si(x, y, y) 6= ti(x, y, y))].

We write K |= W to denote that K has a set of Willard terms.

A finite set of pairs of terms

D = {(pi(x, y, z, u), qi(x, y, z, u)) : 0 ≤ i < n}
is said to be a set of quasi-Day terms for K if and only if the equations

pi(x, y, y, x) ≈ qi(x, y, y, x) and pi(x, x, y, y) ≈ qi(x, x, y, y), 0 ≤ i < n

are valid in K and

K |= (∀x, y, z) [x 6= z →
∨
i<n

pi(x, y, y, z) 6= qi(x, y, y, z)].

Most of the facts stated in the next theorem can be found either in K.
Kearnes, R. McKenzie [11] or in M. Maróti, R. McKenzie [14]. We believe
that Theorem 1(4) is new. The results in the corollary may be partly new.

Theorem 1. For any quasivariety K the following hold.
(1) CD ⇔ CM + SD(∧)
(2) RCD ⇔ RCM + RSD(∧)
(3) PCC ⇔ W and SD(∧) ⇒ PCC
(4) RSD(∧) ⇔ PCC + WEP ⇔ W + WEP
(5) RCM ⇒ EP ⇒ WEP
(6) RCM ⇔ K has quasi-Day terms and satisfies WEP

Corollary 2. Let K ⊆ L be quasivarieties.
(i) If L is RCM then K is RCM iff K satisfies WEP.
(ii) If L is RSD(∧) then K is RSD(∧) iff K satisfies WEP.
(iii) If L is RCM and K is RSD(∧) then K is RCD.
(iv) If L is RSD(∧) and K is RCM then K is RCD.
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We remark that a quasivariety K is CM iff the variety L = H(K) is CM
and that here, L |= CM iff L |= RCM. The analogous statements hold for
the properties CD and SD(∧). Consequently, each of the four assertions of
the corollary remains true when the hypothesis L |= RCM or L |= RSD(∧)
is replaced by K |= CM or, respectively, K |= SD(∧).

Proof. (1) and (2): It is a well-known fact that any lattice is distributive iff
it is both modular and meet (or join) semi-distributive.

(3): The part PCC ⇔ W was proved in M. Maróti and R. McKenzie [14]
(see Theorem 2.3 of [14]). The part SD(∧) ⇒ PCC is an easy consequence
of the fact that every algebraic meet semi-distributive lattice is pseudo-
complemented.

(4): We prove RSD(∧) ⇔ PCC+WEP and obtain RSD(∧) ⇔ W+WEP
as a consequence of (3).

Suppose that K |= PCC+WEP. Let A ∈ K, α, β, γ ∈ ConKA, and
α ∧ β = α ∧ γ = 0A. By PCC, α ∧ (β ∨ γ) = 0A which, by α ∈ ConKA and
WEP, gives α ∧ (β ∨K γ) = 0A. Thus K |= RSD(∧)

Next, we suppose that K satisfies RSD(∧) and we show that K has Willard
terms which, by (3), will give K |= PCC. Let F = FK(3) be the free
algebra in K freely generated by x, y, z. Let α = CgF(x, z), the congruence
generated by the pair (x, z); and let β = CgF(x, y) and γ = CgF(y, z).
Notice that each of α, β, γ is the kernel of an endomorphism of F, and hence
{α, β, γ} ⊆ ConKF. Put

β0 = β

γ0 = γ

βn+1 = β ∨K (α ∧ γn)

γn+1 = γ ∨K (α ∧ βn) .

This defines increasing sequences 〈βn : n ∈ ω〉, 〈γn : n ∈ ω〉 in ConKF.
Then β∞ =

∨
n βn, γ∞ =

∨
n γn are K-congruences. By join-continuity,

α∧ β∞ = α∧ γ∞. Now since K |= RSD(∧), then α∧ β∞ = α∧ (β∞ ∨K γ∞).
Thus

α ∧ (β ∨ γ) ≤ α ∧ (β∞ ∨ γ∞) ≤ α ∧ β∞ ,

showing that (x, z) ∈ β∞.
Now write

M = {(s(x, y, z), t(x, y, z) ∈ F 2 : K |= s(x, y, x) ≈ t(x, y, x)} .

In fact, M = α. Suppose that A ∈ K, a, b ∈ A, and

A |= s(a, a, b) = t(a, a, b) ↔ s(a, b, b) = t(a, b, b) for all (s, t) ∈M .

This means that where f0, f1 are the homomorphisms F → A with

(f0(x), f0(y), f0(z)) = (a, a, b), (f1(x), f1(y), f1(z)) = (a, b, b) ,
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and β′ = ker(f0), γ′ = ker(f1), we have α ∧ β′ = α ∧ γ′. Notice that β′, γ′ ∈
ConKF and β ≤ β′, γ ≤ γ′. An easy calculation then shows inductively that

βn ≤ β′ , γn ≤ γ′ , for all n .

We conclude that (x, z) ∈ β′ (since (x, z) ∈ β∞). But this just means that
a = b (i.e., f0(x) = f0(z)).

We have shown that

K |= (∀x, z) [x 6= z →
∨

(s,t)∈M

(s(x, x, z) = (x, x, z) ↔ s(x, z, z) 6= t(x, z, z))].

With a logical compactness argument, we deduce that the displayed state-
ment remains true when M is replaced by some finite subset W of M .
Clearly, W is a set of Willard terms for K.

This concludes our proof that RSD(∧) ⇒ W.
Finally, we prove that RSD(∧) ⇒ WEP. It will be a proof by contra-

diction. Suppose that K |= RSD(∧), and that A ∈ K, {θ, ψ} ⊆ ConA,
θ∧ψ = 0A, and θK ∧ψK > 0A. If θ∧ψK = 0A, replace θ by ψK, and replace
ψ by θ. Thus we can assume that θ ∧ ψ = 0A, θ ∧ ψK > 0A.

Now let

B = {(x, y) ∈ A2 : there exist c, d ∈ A so that xθcψy and xψdθy} .
That is to say, B = (θ ◦ ψ) ∩ (ψ ◦ θ). B is of course a subuniverse of A×A
that includes θ ∪ ψ and we write B for the corresponding algebra. Where
(x, y) ∈ B and c, d are as above, the elements c, d are unique. We have four
surjective homomorphisms B → A:

π0(x, y) = x ;
π1(x, y) = y ;
ϕ(x, y) = c where xθcψy ;
ϕ′(x, y) = d where xψdθy .

The kernels of these homomorphisms are, of course, K-congruences of B.
They are

00 = ker(π0) ;
01 = ker(π1) ;

θ0 ∧ ψ1 = ker(ϕ) ;
ψ0 ∧ θ1 = ker(ϕ′) .

Thus

α = ker(ϕ) ∧ ker(π1) = θ0 ∧ 01 ,

β = ker(ϕ′) = ψ0 ∧ θ1 ,
γ = ker(π0) ∧ ker(ϕ) = 00 ∧ ψ1

are K-congruences of B.
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Obviously (since θ ∧ ψ = 0A) we have α ∧ β = α ∧ γ = 0B. Since
K |= RSD(∧), then α ∧ β ∨ γK = 0B. We can calculate β ∨ γ as

β ∨ γ = ψ0 .

To see this, note first that β∪γ ⊆ ψ0. Next, suppose that ((x0, y0), (x1, y1)) ∈
ψ0. This means simply that (x0, x1) ∈ ψ. We can calculate:

(x0, y0)γ(x0, ϕ(x0, y0))β(x1, x0)γ(x1, x1)β(x1, ϕ(x1, y1))γ(x1, y1) .

Next, note that from the isomorphism B/ψ0
∼= A/ψ, it follows that the

interval 1A/ψ in ConA is naturally isomorphic with the interval 1B/ψ0 in
ConB via the map τ 7→ τ0, where for all such τ , A/τ ∼= B/τ0. From this,
we deduce that (ψK)0 = ψ0

K. Now

α ∧ ψK0 = α ∧ β ∨ γK = 0B ,

since K |= RSD(∧). But on the other hand, we have some (x, y) ∈ θ ∧ ψK,
x 6= y. Then (x, y), (y, y) ∈ B and obviously,

((x, y), (y, y)) ∈ α ∧ ψK0 ,

which contradicts the displayed equations just above. This ends our proof
that RSD(∧) ⇒ WEP.

Our proof of (4) is now complete. Statement (5) is Theorem 1.1 in K.
Kearnes, R. McKenzie [11]. Theorem 4.1 in the same paper demonstrates
that RCM is equivalent to the conjunction of EP and the existence of quasi-
Day terms. But in the paragraph immediately following the conclusion
of their proof of Theorem 4.1, those authors point out that our stronger
Theorem 1 (6) is true and show how to prove it.

To prove the corollary, assume that K ⊆ L are quasivarieties. It is clear
that if L satisfies PCC (equivalently, W), or has quasi-Day terms, then K
has the same property. Thus (i) and (ii) follow immediately from Theorem
1 (4) and (6). Statements (iii) and (iv) then follow from the equivalence
RCD ⇔ RCM + RSD(∧). Since we did not prove Theorem 1 (6), and the
proof given in K. Kearnes, R. McKenzie [11] is rather involved, we shall now
give a direct proof of the fact that if L is relatively congruence modular and
K has the weak extension property, then K is relatively congruence modular.

Assume that L has RCM and K has WEP. To see that K has RCM, let
A ∈ K and α, β, γ ∈ ConKA with α ≥ β. We must prove that α∧(β∨Kγ) =
β∨K (α∧γ). By replacing β with β∨K (α∧γ), we can assume that α∧γ ≤ β.
Next, replacing A by A/(α ∧ γ) (an algebra in K) and replacing α by
α/(α∧γ), β by β/(α∧γ), γ by γ/(α∧γ), we can assume that α∧γ = 0A. Note
that {α, β, γ} ⊆ ConLA and we do have α ∧ (β ∨L γ) = β ∨L (α ∧ γ) = β.
Now α, β are in ConKA and where τ = β ∨L γ, obviously τK = β ∨K γ.
Applying the WEP in the algebra A/β, it follows from α ∧ τ = β that
α ∧ τK = β—i.e., α ∧ (β ∨K γ) = β = β ∨K (α ∧ γ), as desired.



8 W. DZIOBIAK, M. MARÓTI, R. MCKENZIE, AND A. NURAKUNOV

We recommend to the reader the proof, in K. Kearnes, R. McKenzie [11]
(Theorem 1.1), that RCM ⇒ WEP (and in fact implies EP). It is a nice
argument. �

3. Quasi-Maltsev type characterization of RSD(∧)

As in K. Kearnes and R. McKenzie [11], by a quasi-Maltsev condition we
mean a condition expressed as the disjunction of conditions each of which
postulates the existence of a finite set of terms satisfying certain quasi-
equations. In general, any quasi-Maltsev condition alone cannot characterize
RSD(∧). The reason is that a RSD(∧) quasivariety may have a subquasi-
variety that is not RSD(∧). However, RSD(∧) can be characterized by the
conjunction of a quasi-Maltsev condition and the weak extension property,
as shown by Theorem 3 below. A similar characterization for RCM quasi-
varieties was given in K. Kearnes and R. McKenzie [11]; see Theorem 1(6)
in this paper.

Let K be a quasivariety and F = FK(3) be the free algebra in K freely
generated by x, y, z. Let α = CgF(x, z), β = CgF(x, y), and γ = CgF(y, z).
In the proof of Theorem 1, we defined the following two sequences of con-
gruences.

β0 = β

γ0 = γ

βn = β ∨K (α ∧ γn−1)

γn = γ ∨K (α ∧ βn−1) .

We will refer to these congruences again; see Theorem 3 and its proof
given below.

A tree is a finite ordered set (T,≤) having a smallest element, called the
root of T , and the property that every set of the form r ↓= {x ∈ T : x ≤ r}
is a chain in T . If t < r and r ↓= {r} ∪ t ↓, then r is called a child of t.
A leaf of T is the same thing as a maximal element in (T,≤). For t ∈ T ,
we set h(t) = |t ↓ | − 1 and CT (t) = {r ∈ T : r is a child of t}. We also set
h(T ) = max {h(t) : t ∈ T}. A tree is said to be non-trivial if h(T ) > 0.

Theorem 3. For any quasivariety K the following conditions are equivalent:
(i) K is RSD(∧);
(ii) K satisfies WEP and (x, z) ∈ βn for some n ∈ ω \ {0};
(iii) K satisfies WEP and there exists a finite set ∆ = {(pt, qt) : t ∈

T} ⊆ F 2 where the index set T of ∆ has the structure of a non-
trivial tree such that, for every t ∈ T , the following equations and
quasi-equations are universally valid in K:

(1) If t is the root of T , then pt(x, y, z) ≈ x and qt(x, y, z) ≈ z;
(2) If t is not a leaf in T , then pt(x, y, x) ≈ qt(x, y, x) and∧

{pr(x, y, z) ≈ qr(x, y, z) : r ∈ CT (t)} → pt(x, y, z) ≈ qt(x, y, z);
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(3) If 0 < h(t) < h(T ) and t is a leaf in T , then pt(x, x, y) ≈
qt(x, x, y) when h(t) is odd, and pt(x, y, y) ≈ qt(x, y, y) when
h(t) is even;

(4) If h(t) = h(T ), then either pt(x, x, y) ≈ qt(x, x, y), or pt(x, y, x)
≈ qt(x, y, x) and pt(x, y, y) ≈ qt(x, y, y) when h(T ) is odd, and
either pt(x, y, y) ≈ qt(x, y, y), or pt(x, y, x) ≈ qt(x, y, x) and
pt(x, x, y) ≈ qt(x, x, y) when h(T ) is even.

Proof. (i) ⇒ (ii): It follows from (i) that α ∧ (β ∨ γ) ≤ β∞ – see the proof
of Theorem 1. This gives (x, z) ∈ βn for some n ∈ ω \ {0}.

(ii) ⇒ (iii): Assume that K satisfies WEP, n > 0, and (x, z) ∈ βn.
The idea of the proof of this implication is simple. We begin with the
following claim, which is a consequence of the definitions of βk and γk and
a compactness argument.

Claim 1: For k > 0 and 3-ary terms p and q, if (p, q) ∈ βk (or (p, q) ∈ γk,
respectively) then there are finite sets A ⊆ β and B ⊆ α ∩ γk−1 (or A ⊆ γ
and B ⊆ α∩βk−1, respectively), such that K |=

∧
{r ≈ s : (r, s) ∈ A∪B} ⇒

p ≈ q.

Now for every odd integer i with 0 ≤ i < n, choose (using the claim)
a mapping σ 7→ (Ai(σ), Bi(σ)) defined on γn−i so that for σ = (p, q) ∈
γn−i, Ai(σ) is a finite subset of γ, Bi(σ) is a finite subset of α ∩ βn−i−1,
Ai(σ) ∩ α ∩ βn−i−1 = ∅, and

K |=
∧
{r ≈ s : (r, s) ∈ Ai(σ) ∪Bi(σ)} → p ≈ q .

By placing (x, x) ∈ Bi(σ) \Ai(σ), we can assume that Bi(σ) 6= ∅. For every
even integer i with 0 ≤ i < n, choose a mapping σ 7→ (Ai(σ), Bi(σ)) defined
on βn−i so that for σ = (p, q) ∈ βn−i, Ai(σ) is a finite subset of β, Bi(σ) is
a finite non-empty subset of α ∩ γn−i−1, Ai(σ) ∩ α ∩ γn−i−1 = ∅, and

K |=
∧
{r ≈ s : (r, s) ∈ Ai(σ) ∪Bi(σ)} → p ≈ q .

The labeled tree T we shall use to satisfy (iii) is now determined. We
construct it as follows.

For the elements of T we take all finite sequences t = (σ0, . . . , σi) of
elements of F 2 satisfying: 0 ≤ i ≤ n; σ0 = (x, z); for 0 ≤ j < i, σj ∈ βn−j if
j is even, σj ∈ γn−j if j is odd, and σj ∈ α if 0 < j < i; for 0 ≤ j < i, σj+1 ∈
Aj(σj) ∪ Bj(σj). (Note that these conditions imply that for 0 ≤ j < i − 1
then σj+1 ∈ Bj(σj), but σi ∈ Ai−1(σi−1) is allowed when Ai−1(σi−1) 6= ∅.)
T is ordered by putting t ≤ t′ iff t is an initial segment of t′. This obviously

makes T into a rooted tree with root ⊥ = ((x, z)). For t = (σ0, . . . , σi) ∈ T
we put pt(x, y, z) = p, qt(x, y, z) = q where σi = (p, q). The tree T has
height n. We leave to the reader the straightforward proof that T with the
labels (pt, qt), t ∈ T , satisfies (iii).

(iii) ⇒ (i): Assume (iii). In particular, assume that K satisfies WEP and
that we have a non-trivial tree T with labels (pt, qt), t ∈ T , that satisfies
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(1)–(4) of statement (iii). Since K |= WEP, in order to prove (i) it is enough,
by Theorem 1(4), to show that K has Willard terms.

Claim 2: W = {(pt, qt) : t ∈ T and K |= pt(x, y, x) ≈ qt(x, y, x)} is a set
of Willard terms for K.

To prove this claim, let A ∈ K, {a, b} ⊆ A, and suppose that for all
(pt, qt) ∈W we have

pt(a, a, b) = qt(a, a, b) ↔ pt(a, b, b) = qt(a, b, b).

We must show that a = b.
Where n = h(T ), let I be the set of all i, 0 ≤ i ≤ n, such that: (I) if

i is odd and i = h(t), then pt(a, a, b) = qt(a, a, b); and (II) if i is even and
i = h(t), then pt(a, b, b) = pt(a, b, b). We show that I = {0, 1, . . . , n}, by
reverse induction on i, starting at i = n and working down to i = 0. As
a result we will have that 0 ∈ I, implying that, where ⊥ is the root of T ,
a = p⊥(a, b, b) = q⊥(a, b, b) = b, as desired.

For the base step of the induction, consider a vertex t of height n. If n
is odd, and pt(x, x, y) ≈ qt(x, x, y) is not a valid equation of K, then by (4)
of the condition (iii) of Theorem 3, (pt, qt) ∈ W and pt(a, b, b) = qt(a, b, b).
In this case, pt(a, a, b) = qt(a, a, b) due to our assumption about a, b. On
the other hand, if pt(x, x, y) ≈ qt(x, x, y) is an equation of K, then of course
pt(a, a, b) = qt(a, a, b). This shows that n ∈ I if n is odd. The argument for
the case of even n is analogous, and also uses (4) of the condition (iii) of
Theorem 3.

Now assume that 0 ≤ i < n and i+1 ∈ I. We show that i ∈ I. So let t be
a vertex of T of height i. Let say, i be even. First, assume that t is not a leaf.
Now for every child r of t in T , h(r) = i + 1 and so pr(a, a, b) = qr(a, a, b)
by the inductive assumption. Then, by (2) of the condition (iii) of Theorem
3, we have pt(a, a, b) = qt(a, a, b), and also we have (pt, qt) ∈ W . Thus it
follows that pt(a, b, b) = qt(a, b, b), as required. The case where i is odd and
t is not a leaf yields to a similar argument.

Finally, assume that t is a leaf of height i. Then by (3) of (iii) of Theorem
3, we have that pt(a, a, b) = qt(a, a, b) if i is odd, and if i is even, then
pt(a, b, b) = qt(a, b, b). This concludes our proof that i+ 1 ∈ I implies i ∈ I;
and that concludes our proof of Theorem 3. �

Corollary 4. A quasivariety K has Willard terms if and only if it admits a
labelled tree satisfying condition (iii) of Theorem 3. If T , with labels (pt, qt),
t ∈ T , is such a tree for K, then W = {(pt, qt) : t ∈ T and K |= pt(x, y, x) ≈
qt(x, y, x)} is a set of Willard terms for K.

Proof. Claim 2 in the proof of Theorem 3 shows that if T is such a tree for
K then W is a set of Willard terms for K. Conversely, it is proved in M.
Maroti, R. McKenzie [14] that a quasivariety has Willard terms iff it has
pseudo-complemented congruence lattices, and consequently, the possession
of Willard terms implies that (x, z) ∈ βn for some n > 0. �
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The tree condition (iii) in Theorem 3 is similar to the condition shown by
R. Willard [22] to be equivalent to congruence meet semi-distributivity for
a variety, and from which he extracted the existence of what we have called
Willard terms.

4. Finite axiomatizability

Our purpose in this section is to prove a very general result about finite
axiomatizability (Theorem 6), and use it to prove that every finitely gener-
ated quasivariety satisfying RSD(∧), and having finite signature, is finitely
axiomatizable (Theorem 7). Using Theorem 4, we also partially prove D.
Pigozzi’s conjecture (Theorem 8).

Let us recall from the introduction some notable finite axiomatizability
theorems. Suppose that K is a finitely generated quasivariety of finite sig-
nature. K. Baker [2] proved that K is finitely axiomatizable, provided K
satisfies CD + H(K) = K (i.e., K is a congruence distributive variety). D.
Pigozzi [21] proved more generally that K is finitely axiomatizable if K satis-
fies RCD. R. Willard [22] extended K. Baker’s theorem in another direction:
K is finitely axiomatizable if K satisfies SD(∧) + H(K) = K. M. Maróti, R.
McKenzie [14] obtained a somewhat complicated result (see their Theorem
7.1) that extends both theorems of D. Pigozzi and R. Willard. Our Theorem
7 below extends the theorems of D. Pigozzi and R. Willard, and is a cleaner,
more refined version of the result of M. Maróti and R. McKenzie.

Let K and L be locally finite quasivarieties of finite signature such that
K is properly included in L. A finite algebra A is said to be (K,L)-minimal
if A 6∈ K, A ∈ L, and every proper subalgebra of A belongs to K. For a
(K,L)-minimal algebra A, we let ΘA

K denote the smallest congruence on A
such that A/ΘA

K ∈ K.
Obviously, the relation of isomorphism partitions the family of all (K,L)-

minimal algebras. Let S be a selector set of that partition.
For A ∈ S, let a 7→ xa be a fixed one-to-one assignment of individual vari-

ables to the elements of A. Let D(A) denote the collection of all equations
of the form f(xa1 , . . . , xan) = xf(a1,...,an), where f is an n-ary operation sym-
bol of the signature of A; and a1, . . . , an are elements of A. As the signature
is finite and A is finite, D(A) is finite. We set

ΣA = {
∧
D(A) → xa ≈ xb : a 6= b and (a, b) ∈ ΘA

K}.

For a set of quasi-identities Γ, we let ModL Γ denote the set of algebras
of L in which the quasi-identities of Γ are universally valid.

Proposition 5. K = ModL (
⋃
{ΣA : A ∈ S}).

Proof. ⊆: Let B ∈ K and A ∈ S. Let (a, b) ∈ ΘA
K be such that a 6= b. Let

xa 7→ v(xa) be an assignment of values in B of {xa : a ∈ A} under which the
equations of D(A) are satisfied. Notice that the map a 7→ v(xa), denoted
by ϕ, is a homomorphism from A to B. As B ∈ K, A/ker(ϕ) ∈ K. So
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ΘA
K ≤ ker(ϕ). This gives ϕ(a) = ϕ(b). Thus v(xa) = v(xb), proving that

B |=
∧
D(A) → xa = xb, i.e. B ∈ ModL (

⋃
{ΣA : A ∈ S}).

⊇: Let B ∈ L be finite and B 6∈ K. Then there is A ∈ S that is
isomorphic to a subalgebra of B. As A 6|= ΣA, B 6|= ΣA. Thus B 6∈
ModL (

⋃
{ΣA : A ∈ S}). �

Theorem 6. Suppose that K ⊆ L ⊆ L′ are quasivarieties of finite signature
such that K satisfies WEP and L′ is finitely generated. Then K is finitely
axiomatizable relative to L.

Proof. Let n be an integer not less than the cardinality of any of the gen-
erators of L′. Let m be the maximum size of an n-generated subalgebra of
any algebra in L′. We may assume that K 6= L. We claim that any finite
algebra in L \ K has a subalgebra of at most m elements that lies outside
of K. This will mean that the selector S as defined above is finite. This, in
turn, by Proposition 5, will complete the proof.

To see the claim, we assume that A is a finite algebra in L \ K. For
X,Y ⊆ ConA, we define X � Y iff for every α ∈ Y there exists β ∈ X such
that β ≤ α. Notice that � restricted to antichains in ConA is a partial
order.

Let X be an antichain in ConA whose intersection is 0A and such that for
each α ∈ X, the quotient algebra A/α has at most n elements. Notice that
such X exists for A ∈ L since n bounds the cardinality of the generators
of L′. Now, among all antichains Y in ConA with X � Y and with the
intersection of Y equal to 0A, we choose one, say Z, that is �-maximal. It
follows from the choice of Z that each member of Z is a meet-irreducible
element of ConA. Since A is outside of K, we can choose γ in Z so that
A/γ 6∈ K. Let δ be the unique cover of γ in ConA. Since, by the choice, Z is
�-maximal, there is a pair (a, b) in A×A such that (a, b) ∈ δ∧

∧
(Z\{γ}) and

a 6= b. Choose a0, . . . , ak−1 in A to be a selector set for all the γ-equivalence
classes in A with a0 = a and a1 = b. (Note that 2 ≤ k since (a, b) 6∈ γ.) As
X � Z, it follows that k ≤ n.

Let B be the subalgebra of A generated by a0, . . . , ak−1. As k ≤ n, B
has at most m elements. Let γ′ and σ denote the restrictions of γ and∧

(Z \ {γ}) to the algebra B, respectively. Obviously, γ′ ∧ σ = 0B. We now
want to show that B 6∈ K. To this effect suppose otherwise that B ∈ K.
Then, by WEP of K, there are K-congruences γ′K and σK on B that extend
γ′ and σ, respectively, and are such that γ′K ∧ σK = 0B. As a, b ∈ B and
(a, b) ∈

∧
(Z \ {γ}), it follows that (a, b) ∈ σ ≤ σK. This implies (a, b) 6∈ γ′K.

Since B is a subalgebra of A generated by a selector set for all the γ-
equivalence classes in A, it follows that B/γ′ is isomorphic to A/γ. Thus
γ′ has the unique cover in ConB to which (a, b) belongs; recall that a0 = a
and a1 = b. This implies that γ′K = γ′ for otherwise γ′K would be above this
unique cover and as a consequence (a, b) would belong to γ′K. But A/γ 6∈ K
and so B/γ′ 6∈ K. Hence B/γ′K 6∈ K, a contradiction. Thus B 6∈ K. �
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We remark that in place of assuming K satisfies WEP in Theorem 6 it
would suffice to assume, where L′ is generated by algebras of at most n
elements, that for every n-generated algebra A ∈ K and for all α, β ∈∈
ConA, if α ∧ β = 0A then αK ∧ βK = 0A. (An examination of the proof
reveals that this is all we used.)

In view of the fact that RSD(∧) ⇔ PCC + WEP for quasivarieties (The-
orem 1 (4)), our next theorem is clearly identical with Corollary 6.4 in M.
Maróti, R. McKenzie [14]. Those authors, however, did not know this char-
acterization of RSD(∧), and we wish to present a somewhat cleaner proof of
the result than they gave. Nevertheless, we shall have to use without proof
one of their results.

Theorem 7. Every finitely generated quasivariety of finite signature satis-
fying RSD(∧) is finitely axiomatizable.

Proof. Let K be a finitely generated quasivariety of finite signature, satis-
fying RSD(∧). By Theorem 1 (4) above, K satisfies PCC and WEP. Now,
Corollary 5.4 in M. Maróti, R. McKenzie [14] and its proof establishes that
K ⊆ L ⊆ L′ for a certain finitely axiomatizable quasivariety L and finitely
generated quasivariety L′. Then it follows from Theorem 6 that K is finitely
axiomatizable. �

As RSD(∧) ⇔ PCC + WEP, one may ask whether Theorem 7 remains
true if RSD(∧) is replaced in it by PCC or by WEP. The answer is negative
in the first case (see W. Dziobiak [7], J. Ježek, M. Maróti, R. McKenzie [10],
and R. McKenzie [18]) but it is unknown to us in the second case.

Theorem 8. If K is a finitely generated quasivariety of finite signature
which is RCM and H(K) is CM and residually small, then K is finitely
axiomatizable.

Proof. By Theorem 1(6), K |= WEP. The result now follows from Theorem
6, R. McKenzie’s theorem (see introduction), and a result of R. Freese, R.
McKenzie [8] which says that every finitely generated and residually small
CM variety of finite signature is of the form L = SP(M) for some finite set
M of finite algebras. �

Corollary 9. Let M be a finite set of finite algebras of finite signature
from a CM variety. If SP(HS(M)) is RCM, then SP(HS(M)) is finitely
axiomatizable.

Proof. Let B ∈ HS(M) be subdirectly irreducible with monolith θ. Let ψ be
a congruence on B such that the commutator [θ, ψ] calculated in the variety
generated by M is equal to 0B. As SP(HS(M)) is RCM and 0B = [θ, ψ] =
[θ ∧ ψ,ψ], it follows from the note following Theorem 3.1 of K. Kearnes
and R. McKenzie [11] that [ψ,ψ] = 0B. Thus any subdirectly irreducible
algebra B from HS(M) satisfies, where θ is the monolith of B: If ψ ∈ ConB
and [θ, ψ] = 0B, then [ψ,ψ] = 0B. This, by a result of R. Freese and R.
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McKenzie [8], gives that HSP(M) is residually small. Thus, by Theorem 8,
SP(HS(M)) is finitely axiomatizable. �

In the context of Theorem 8, it is worthwhile to mention a result of
R. McKenzie [15] which says that if V is a locally finite variety which is
residually finite and which satisfies some nontrivial congruence identity, then
V is congruence modular.

5. Examples

This section contains four examples each of which provides a negative
answer on some questions emerging naturally in the context of our work.

Example 10. This is an example of a finitely generated quasivariety K
that satisfies RSD(∧) + ¬EP. We define a five-element algebra A and a
two-element algebra B = A/γ for a certain congruence γ of A and take
K = SP({A,B}). We put

A = 〈{0, a, b, c, 1},∧, 0̄, ā, b̄, c̄, 1̄, f0, f1〉
so that 〈{0, a, b, c, 1},∧〉 is a semilattice with least and largest elements 0, 1
and with a ∧ b = c, the five elements of A are denoted by constants in the
signature of A, and f0, f1 are unary operations defined by f0(b) = f0(1) = c
and f0(x) = 0 for x ∈ {0, a, c}, f1(a) = f1(1) = c and f1(x) = 0 for x ∈
{0, b, c}. This algebra is subdirectly irreducible and its congruence lattice
is an eight-element lattice. Its least non-zero congruence is the equivalence
relation µ that has {0, c} as its only non-singleton equivalence class. Another
congruence is γ that has {0, a, b, c} and {1} as equivalence classes. We take
B = A/γ, and K = SP({A,B}).

For any two distinct elements e, e′ of A, and any f, f ′ ∈ A \ {1}, both
A and B satisfy the quasi-equation ē = ē′ → f̄ = f̄ ′. Hence the lattice of
K-congruences of A consists of 0A, γ, and 1A. Among the other congruences
of A are β0 with equivalence classes {0, c, a}, {b, 1} and β1 with equivalence
classes {0, c, b}, {a, 1}. We have β0 ∧ β1 = µ while β0

K = 1A = β1
K and

µK = γ. Thus K does not have the EP.
Since members of K are expansions of semilattices, K does have the PCC,

even the SD(∧). To be able to conclude that K |= RSD(∧), we must show
that K |= WEP.

To see this, let C be any finite member of K. We may assume that C
is a subalgebra of AI0 ×BI1 for finite, pairwise disjoint sets I0, I1 and not
isomorphic to a subalgebra of AI′0×BI′1 for any I ′0 ⊆ I0, I

′
1 ⊆ I1 with I ′0 6= I0

or I ′1 6= I1.
It will suffice to prove the following: Let 0C ≺ α be any atom in the con-

gruence lattice of C and let β be the pseudo-complement of α—the largest
congruence disjoint from α; then β is a K-congruence of C. For that pur-
pose, we may choose p, q ∈ C so that (p, q) ∈ α, q < p (in the semilattice
order), and for all p′, q′ ∈ C with q′ ≤ p′ < p and (p′, q′) ∈ α we have p′ = q′.
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Case 0: There is i0 ∈ I0 with p(i0) 6= q(i0). If p(i0) ∈ {a, b, 1}, then one
of the pairs (f0(p), f0(q)) = (p′, q′) or (f1(p), f1(q)) = (p′, q′) has p′ > q′.
Since in both cases, p′ < p, this is impossible. Thus p(i0) ∈ {0, c}, forcing
(p(i0), q(i0)) = (c, 0). Now (p ∧ c̄, q ∧ c̄) ∈ α, and it follows that q < p ≤ c̄.

Now let ηi0 denote the kernel of the projection of C onto A at the i0th
coordinate (the projection is onto since we have the constants in the signa-
ture), and let η′i0 denote the kernel of the projection of C into AI0\{i0}×BI1 .
By the minimality of our subdirect representation of C, there must be a pair
(r, s) ∈ η′i0 , r 6= s. We can assume that s < r. As above, we can also as-
sume that r ≤ c̄C. Thus (r(i0), s(i0)) = (c, 0). Now it is easy to verify that
p ≥ r ∧ p > s ∧ p ≥ r ∧ q. Thus (r ∧ p, s ∧ p) ∈ α. (By minimality of p,
then p = r ∧ p.) The pair (r ∧ p, s ∧ p) of functions, which differ only at
i0, must generate α; hence α ≤ η′i0 . This implies that α ∧ ηi0 = 0C , and so
β ≥ ηi0 . Now C/ηi0

∼= A and so ηi0 has a unique cover µi0 ∈ ConC, i.e.
(x, y) ∈ µi0 iff (x, y) ∈ C2 and (x(i0), y(i0)) ∈ µ. Clearly, (r∧ p, s∧ p) ∈ µi0 ,
hence β 6≥ µi0 . So we conclude that β = ηi0 . But this implies that β is a
K-congruence of C, as we wanted to prove.

Finally, we consider

Case 1: Where ηI0
is the kernel of the projection of C into AI0 and ηI1

is the kernel of the projection of C into BI1 , we have that α ≤ ηI0
. In this

case, α ∧ ηI1
= 0C , implying that β ≥ ηI1

. But since C/ηI1
is embeddable

into BI1 , it is easy to see that every congruence of C containing ηI1
is a

K-congruence. Thus β is a K-congruence, also in Case 1. �

Example 11. This is an example of a finitely generated quasivariety that
satisfies SD(∧) and not WEP, and hence PCC and not RSD(∧). We remark
that the examples of finitely generated quasivarieties of lattices that are not
finitely axiomatizable supplied by, for example, V.P. Belkin [3], satisfy PCC
and, as a consequence of our Theorem 1 and Theorem 7, cannot satisfy WEP.
The example we now present is, however, much simpler to demonstrate.

We use a four-element algebra A = 〈{0, a, b, 1},∧, 0̄, ā, b̄, 1̄〉. Here, 〈A,∧〉
is the four element meet-semilattice with two atoms a, b and the other op-
erations are the constants. This algebra has the congruence γ with classes
{0, a, b}, {1} and we put B = A/γ and K = SP({A,B}). A also has con-
gruences β0 with classes {0, a}, {1, b} and β1 with classes {0, b}, {1, a}. By
an obvious argument very similar to the one we used in the last example,
one shows that β0

K = 1A = β1
K. However β0 ∧ β1 = 0A, and this shows

that K fails to have WEP. This quasivariety does have SD(∧), due to the
presence of the semilattice operation. �

Example 12. This is an example of a finitely generated quasivariety that
satisfies RCD + CM + ¬CD. We put K = SP(A) where A is a six-element
algebra which we now define.

A = 〈{0, 1, 2, a, b, c},m,∧, 0̄, 1̄, 2̄, ā, b̄, c̄, F0, Fa, Fb, Fc〉
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has six constants, a ternary operation m, binary operation ∧, and four unary
operations Fr where r ∈ U = {0, a, b, c}. We define Fr so that Fr(r) = 2 and
Fr(x) = 1 for all x ∈ A \ {r}. Let D = {1, 2} and let 〈U,+〉 and 〈D,+〉 be
Boolean groups with identity elements 0, 1 respectively. We define m(x, y, z)
so that m(x0, x1, x2) = x0 + x1 + x2 if {x0, x1, x2} is a subset of U , or of
D; and otherwise, if |{i : xi ∈ U}| = 1 and {p} = {x0, x1, x2} ∩ U , or if
|{i : xi ∈ D}| = 1 and {p} = {x0, x1, x2} ∩D then we put m(x0, x1, x2) = p.
Thus m is fully defined as an operation on A. We define x ∧ y to be the
minimum element in {x, y} ∩D if {x, y} ∩D is non-empty, and otherwise,
x ∧ y = 2.

Now m is a Maltsev operation, i.e., it satisfies the equations m(x, y, y) =
x = m(y, y, x) on A. Thus K satisfies CM. The equivalence relation µ with
one non-trivial block {1, 2} is a congruence of A, in fact, the smallest non-
zero congruence of A. Besides 0A and 1A and µ, this algebra has precisely
four further congruences; they are the equivalence relations µ ∪ β where β
is any non-zero congruence on 〈U,+〉. The congruence lattice of 〈U,+〉 is in
this way embedded as an interval in ConA. This shows that K does not
satisfy CD.

Finally, we must demonstrate that K |= RCD. It will suffice to show that
every finite algebra in K has a distributive lattice of K-relative congruences.
So let B be a finite algebra in K. We can assume that B ⊆ An where n is
a positive integer, and that for all 1 ≤ m < n, B is not embeddable into
Am. For 0 ≤ i < n let 0i be the kernel of the projection homomorphism
mapping of B to A at the ith coordinate. Because n has been choosen to be
minimal, the set P = {00, . . . , 0n−1} is an n-element subset of ConKB, and
moreover, the set C of all intersections of subsets of P is a 2n-element subset
of ConKB. Actually, if {φ}∪Γ ⊆ P then φ ≥

∧
Γ iff φ ∈ Γ. Our objective is

to prove that C = ConKB. If this is true, then it easily follows that the map
Γ 7→

∧
Γ is an isomorphism of the Boolean lattice of all subsets of P onto

the lattice ConKB. In this way, ConKB will be shown to be distributive.
To accomplish this objective, suppose that θ is an arbitrary member of

ConKB. Set T equal to the set of all η ∈ P such that θ ≤ η, and put
θ′ =

∧
T . So θ ≤ θ′ and we have to prove that θ = θ′.

Claim 1: Dn ⊆ B.
To prove this, choose any 0 ≤ i < n. Now since 0i 6≥

∧
(P \{0i}), there are

f, g ∈ B with f(j) = g(j) exactly for j 6= i, 0 ≤ j < n. If {f(i), g(i)}∩U 6= ∅,
say f(i) = r ∈ U , then where f ′ = Fr(f), g′ = Fr(g), we have {f ′, g′} ⊆
B ∩ Dn, (f ′(i), g(i)) = (2, 1), and f ′(j) = g′(j) for all j 6= i. Then put
f ′′ = m(f ′, g′, 1̄) and notice that f ′′ ∈ Dn ∩ B is the function [1, 2]i that
takes value 2 at i and 1 elsewhere. On the other hand, if {f(i), g(i)} ⊆ D
then put f ′′ = m(f ∧ 2̄, g ∧ 2̄, 1̄) and again, f ′′ = [1, 2]i ∈ Dn ∩B. We have
shown that B contains all the functions [1, 2]i, 0 ≤ i < n. Now if f, g ∈ Dn

and f ∧ g = 1̄, then m(1̄, f, g) = h is f ∨ g—i.e., h(i) = 2 iff f(i) = 2 or
g(i) = 2 for all 0 ≤ i < n. It should now be clear that Dn ⊆ B.
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Claim 2: If η = 0i ∈ P , then θ 6≤ η iff (1̄, [1, 2]i) ∈ θ and (2̄, [2, 1]i) ∈ θ.
Indeed, suppose that θ 6≤ 0i. Choose (f, g) ∈ θ with f(i) 6= g(i). Then

as above, by either replacing (f, g) by (Fr(f), Fr(g)) for some r ∈ U ∩
{f(i), g(i)}, or by replacing (f, g) by (f ∧ 2̄, g∧ 2̄), we get (f ′, g′) ∈ θ∩ (Dn×
Dn), f ′(i) 6= g′(i). Now {f ′ ∧ [1, 2]i, g′ ∧ [1, 2]i} = {1̄, [1, 2]i}; and so we have
(1̄, [1, 2]i) ∈ θ. Then also

((2̄, [2, 1]i) = (m(1̄, 2̄, 1̄),m(1̄, 2̄, [1, 2]i)) ∈ θ ,

as required.

Claim 3: θ′ ∩ (Dn ×Dn) ⊆ θ.
To prove this, let

S = {0, . . . , n− 1} \ T = {i0, . . . , ik−1}, |S| = k .

Then (2̄, [2, 1]S) ∈ θ. This is clear if k = 0 for then [2, 1]S = 2̄. It is also
clear if k = 1. If k > 1 then

[2, 1]S = m(m(· · ·m([2, 1]i0 , 2̄, [2, 1]i1), . . . , ), 2̄, [2, 1]ik−1
)

≡ m(m(2̄, 2̄, 2̄), . . . , ), 2̄, 2̄) (mod θ)
= 2̄ .

Now let (f, g) ∈ θ′, {f, g} ⊆ Dn. Since f and g agree on T , then f ∧ [2, 1]S =
g ∧ [2, 1]S . Also, f = f ∧ 2̄ and g = g ∧ 2̄. From ([2, 1]S , 2̄) ∈ θ, we conclude
that (f, g) ∈ θ.

Finally, to finish this proof that θ = θ′, let us suppose that (f, g) ∈
θ′ \ θ. Since θ ∈ ConKB by assumption, then there is a homomorphism
π : B → A with π(f) 6= π(g) and θ ⊆ ker(π). Let r ∈ U be arbitrary. Now
(Fr(f), Fr(g)) ∈ θ′ ∩ (Dn×Dn) hence by Claim 3, (Fr(f), Fr(g)) ∈ θ and so
π(Fr(f)) = π(Fr(g)). This means that Fr(π(f)) = Fr(π(g)) for all r ∈ U ;
and that implies that {π(f), π(g)} ⊆ D since π(f) 6= π(g). Similarly, we
have that (f ∧ 2̄, g∧ 2̄) ∈ θ and π(f)∧ 2̄ = π(g)∧ 2̄. Since {π(f), π(g)} ⊆ D,
then

π(f) = π(f) ∧ 2̄ = π(g) ∧ 2̄ = π(g) .

This contradiction completes our proof that θ = θ′. �

Example 13. This is an example, due to R. Willard, of a finitely generated
quasivariety K with RCM and such that H(K) is CM but is not residually
small. We define a finite algebra A with universe A := Z4 × Z2 as follows.
First define λi : Z4 → Z2 for i < 2 by

x λ0(x) λ1(x)
0 0 0
1 0 1
2 1 0
3 1 1
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Then define

fi(〈x, r〉) = 〈0, λi(x)〉, i = 0, 1
f2(〈x, r〉) = 〈0, r〉

〈x, r〉+ 〈y, s〉 = 〈x+ y, r + s〉
〈x, r〉 · 〈y, s〉 = 〈2xy, rs〉

Observe that 〈A; +, ·〉 is a ring (without identity) isomorphic to 2Z8×Z2.
Let A0 = {0} × Z2 ⊆ A and write 0 for 〈0, 0〉 and 1 for 〈0, 1〉. Then we can
write A0 = {0,1} = 2, which is convenient since A0 is closed under +, · and
with respect to these operations is a 2-element boolean subring of 〈A; +, ·〉.
We define

A = 〈A; +, ·, 0,1, fi (i < 3)〉
and K = SP(A).

Clearly, H(K) is congruence modular. We shall show that K has WEP
and H(K) is residually large. We first show that ConA is a 4-element chain
with congruences 0A < µ < θ < 1A where

µ = 0Z4 × 1Z2

θ = γ × 1Z2

and γ is {0, 2}2 ∪ {1, 3}2.
First check that µ is a congruence. Next observe that the presence of +

implies that 0A ≺ µ. Finally, the presence of f0, f1 guarantee that if a, b ∈ A
with a 6= b then CgA(a, b) ∩ µ 6= 0A, proving µ is the monolith of A. Now
A/µ is term-equivalent to the 4-element ring 2Z8, whose congruences are
known, completing the picture of ConA.

Since the ring 2Z8 generates a residually large variety, so does A/µ. Thus
H(K) is residually large.

It remains to prove WEP. It will suffice to show that each finite B ∈ K has
WEP. Choose finite B ∈ K and represent it as B ≤ An with n minimum.
For each i < n let µ′i = (0A× · · · × 0A×µ× 0A× · · · × 0A)|B where the lone
copy of µ occurs in the i’th coordinate. Similarly let as usual 0i = (1A ×
· · ·×1A×0A×1A×· · ·×1A)|B and 0′i = (0A×· · ·×0A×1A×0A×· · ·×0A)|B.
Then µi, 0i, 0′i ∈ ConB.

Put B0 = B ∩ (A0)n. Observe that fi(B) ⊆ B0 for i < 3, and that
〈B0; +, ·, 0, 1〉 is a boolean subring of 2n. For each i < n let

ei = (0, . . . ,1, . . . ,0) ∈ 2n

with the single 1 occurring in the i’th coordinate.

Claim 1: ei ∈ B0 for each i < n.
To prove the claim, Fix i < n. By minimality of n we have a, b ∈ B with

[[a 6= b]] = {i}. There exists j < 3 such that fj(ai) 6= fj(bi), so by replacing
a, b with a′ := fj(a), b′ := fj(b) we may assume with no loss of generality
that a, b ∈ B0. Then ei = a + b ∈ B as required. Since B0 is a boolean
subring of 2n, it follows as a corollary that B0 = 2n.
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Claim 2: If i < n and c, d ∈ B and ci 6= di, then µ′i ≤ CgB(c, d).
As in the proof of Claim 1, we have a unary term operation f(x) such that

f(B) ⊆ B0 and {f(c)i, f(d)i} = {0,1}. The polynomial x 7→ x · ei maps
{f(c), f(d)} to {0, ei}, proving (0, ei) ∈ CgB(c, d). Then for every a ∈ B,
(a, a+ ei) = (a+ 0, a+ ei) ∈ CgA(c, d), proving µ′i ≤ CgA(c, d).

Now to prove that B has WEP, we use Lemma 14 from the next section.
Let α be a minimal congruence of B and let β ∈ ConB be maximal with
respect to satisfying α ∧ β = 0B. Then by Claim 2, α = µ′i for some i < n
and β ≤ 0i. Since µ′i ∧ 0i = 0B we have 0i ≤ β. Therefore β = 0i, so
β ∈ ConK(B) as required. �

Notice that since every subalgebra B of A is subdirectly irreducible with
non-Abelian monolith CgB(0,1), it follows by Theorem 2.3 and 4.1 of M.
Maróti and R. McKenzie [14] that K has Willard terms. Hence, by Theorem
1(4), K is RSD(∧) and thus, by Theorem 7, K is finitely axiomatizable.

6. A characterization of finite F for which SP(F) |= RSD(∧)

Let F be any finite set of finite algebras of the same signature. According
to Theorem 4.1 in M. Maróti, R. McKenzie [14], SP(F) satisfies PCC if and
only if every minimal congruence of every algebra in S(F) is non-Abelian.
Our characterization of those F for which SP(F) |= RSD(∧), equivalently,
SP(F) |= PCC + WEP, is a little more complicated. If a quasivariety K
satisfies PCC then there are several ways to characterize WEP for K. We
use αc to denote the pseudo-complement of a congruence α on some algebra
in K. Supposing that K |= PCC, these statements are equivalent to WEP
for K:

• For A ∈ K and α, β ∈ ConA with α ∧ β = 0A, αK ∧ βK = 0A.
• For A ∈ K and α, β ∈ ConA with α ∧ β = 0A, α ∧ βK = 0A.
• For A ∈ K and α ∈ ConA, αc ∈ ConKA.

If K is locally finite but does not necessarily satisfy PCC, there is another
way to characterize WEP.

Lemma 14. Let K be a locally finite quasivariety.
(1) K satisfies WEP iff for every finite A ∈ K and atom α ∈ ConA, all

maximal members of the set {β ∈ ConA : β 6≥ α} belong to ConKA.
(2) If K satisfies PCC then K satisfies WEP iff for every finite A ∈

K and atom α ∈ ConA, the pseudo-complement of α belongs to
ConKA.

Proof. Suppose that α is an atom in ConA and β 6≥ α while for every
congruence γ > β, we have γ ≥ α. Then β is strictly meet irreducible
and its unique cover is β ∨ α. If K has the weak extension property, then
β
K ∧ αK = 0A, implying that βK = β, so β ∈ ConKA. This shows the

necessity of the condition in (1). To see that this condition is also sufficient,
suppose that K does not have the weak extension property. Then in fact



20 W. DZIOBIAK, M. MARÓTI, R. MCKENZIE, AND A. NURAKUNOV

there is some finite A ∈ K and congruences α, β such that α ∧ β = 0A and
α∧βK > 0A. Let α0 be any atom (minimal congruence) below α∧βK. Now
α0∧β = 0A. Let β′ be any maximal member of the set of congruences τ with
α0 6≤ τ and β ≤ τ . We have to see that β′ 6∈ ConKA. But if β′ ∈ ConKA,
then βK ≤ β′ implying that βK 6≥ α0, which is not the case. This completes
our argument for (1).

Now assume that K satisfies PCC. Then where A ∈ K and α is an atom
in ConA, there is a unique maximal member of the set of congruences not
dominating α, namely αc. Thus (2) can be seen as a specialization of (1) to
this case. �

If K is any quasivariety and if α is an atom in the congruence lattice of an
algebra A ∈ K, and if the pseudocomplement αc of α exists, then A/αc is a
subdirectly irreducible algebra. Unless this subdirectly irreducible algebra
belongs to K, then K cannot have WEP. These observations imply, for
instance that if K is locally finite and satisfies RSD(∧) then it is generated
by its finite subdirectly irreducible members.

Recall that when α is a non-Abelian atom in the congruence lattice of a
finite algebra, the pseudo-complement of α does exist. (See D. Hobby, R.
McKenzie [9].)

Lemma 15. Assume that K is a quasivariety, K |= PCC, {A0, . . . ,Ak}
is a finite collection of finite algebras in K, and A ≤

∏
i Ai is a subdirect

product. Let α be an atom in ConA and β = αc. Choose i, 0 ≤ i ≤ k, such
that α 6≤ 0i. Then

(i) 0i ≤ β; and
(ii) if |Ai| ≤ n and the cardinality of the free algebra on n generators

in K is m, then there are B0, . . . ,Bm−1 ∈ S({A0, . . . ,Ak}) with
B0 = Ai, and there is B ≤

∏
j Bj a subdirect product, and an

atom α′ in ConB, such that where β′ = α′c, we have β′ ≥ 00 and
A/β ∼= B/β′ ∈ H(B0) = H(Ai).

Proof. Clearly, since α 6≤ 0i then α ∧ 0i = 0A, implying that 0i ≤ αc = β.
Choose a subset {a0, . . . , an−1} ⊆ A which intersects all 0i-classes and such
that a0 6= a1 and (a0, a1) ∈ α. Let B be the subalgebra of A generated
by {a0, . . . , an−1}. Thus |B| ≤ m. Note that (a0, a1) 6∈ 0i, else α =
CgB(a0, a1) ≤ 0i. It is then easy to see that there are j0 = i, j1, . . . , jm−1 ∈
{0, . . . , k} such that (

∧
0≤r<m 0jr)|B = 0B. Let β′ = β|B and α′′ = α|B.

Clearly, α′′ ∧ β′ = 0B, α′′ > 0B, and since B projects onto Ai = Aj0 , every
congruence strictly larger than β′ contains α′′. β′ is the pseudo-complement
of α′′ in ConB. Let α′ be any atom of ConB lying below α′′. Then β′ = α′c

in ConB. Now let Br ⊆ Ajr be the projection of B at the jr coordinate.
Thus B0 = Ai. Replacing B by the subdirect product of B0, . . . ,Bm−1

canonically isomorphic to it, and β′, α′ by the corresponding congruences,
we have the desired conclusions. �
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Theorem 16. Suppose that K = SP(F) where F is a finite collection of
finite algebras and S(F) = F . Let n = max(|A| : A ∈ F) and let f be the
cardinality of the free algebra on n generators in K. Then K |= RSD(∧) iff
the following are true.

(i) Every atom in the congruence lattice of any member of F is non-
Abelian.

(ii) Let A ≤
∏

0≤i<f Ai be a subdirect product with {A0, . . . ,Af−1} ⊆ F .
Let α be any atom in ConA and β = αc. Then A/β is isomorphic
to a member of F .

Proof. The necessity of (i) follows from M. Maróti, R. McKenzie [14], Theo-
rem 4.1. To see that (ii) is necessary, observe that by Lemma 14, A/β must
belong to K; but it is a subdirectly irreducible algebra and therefore, must
actually be isomorphic to a subalgebra of some member of F .

Now suppose that (i) and (ii) hold. Then we have that K |= PCC. To
establish that K |= WEP, using Lemma 14 (2), let A ≤

∏
0≤i≤k Ai a subdi-

rect product, with k a non-negative integer and Ai ∈ F . Let α be an atom
in ConA and β = αc. Now it follows from Lemma 15, in conjunction with
(ii), that A/β ∈ K. �

It is obvious that the above theorem supplies an algorithm to effectively
recognize whether SP(F) is RSD(∧). It is not obvious if there may be some
algorithm to solve this problem which lies low in the complexity hierarchy.

To conclude, we present three related problems that seem to us very
interesting and very difficult.

Problem 17. Suppose that K is a finitely generated quasivariety satisfying
CM + RCM. Is it finitely axiomatizable?

Problem 18. Suppose that K is a finitely generated quasivariety satisfying
RCM. Is it finitely axiomatizable?

Problem 19. Suppose that K is a finitely generated quasivariety satisfying
WEP. Is it finitely axiomatizable?
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